
APPLICATIONS OF DEFINITE INTEGRAL 

1. Area between Curves:

The area A of the region bounded by the curves y=f(x), y=g(x) and the lines 

x=a, x=b, where f and g are continuous and f(x) ≥ g(x) for all x in [a, b], is 
b 

A  [ f (x)  g(x)]dx
a 

 dx 

Steps to find area between two curves: 

1. Sketch the graph of the curves together.

This identify the up curve yT and the

bottom curve yB

Find the limits of integration (if not given

in the problem).

Write a formula of [f(x) – g(x)] or [yT-yB] and

simplify it.

2. 
 dx 

3. 

4. Integrate [f(x) – g(x)] from a to b. The number you get it is the area.

Example 1: Find the area of the region enclosed by the parabolas y  x2 and 

y  2x  x2 

Sol.: We first find the points of intersection of the parabolas by solving their 

equations simultaneously. 
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x2  2x  x2 

2x  0 

x 1  0 

x2  x2  2x  0 2x2  2x  0 2x(x 1)  0 



 

either 

or 

x  0  y  0 

 x  1  y  1 

The points of intersection are (0,0) and (1,1) 

We see from Figure that the top and bottom 

boundaries are 
 dx 

y  2x  x2 and y   x2 T B 

The area of a typical rectangle is 

dA  y  y  (2x x2) (x2)  2x  x2  x2  2x  2x2 T B 

and the region lies between x=0 and x= 1. So the total area is 
1 

2x3 1 2x2 2(1)3 1 
A   dA  (2x  2x2 )dx    [(1)2  ] [0]  square units 

2 3 3 3 0 0 

If we are asked to find the area between the curves y=f(x) and y=g(x) where 

f(x) ≥ g(x) for some values of x but g(x) ≥ f(x) for values of x, then we split the 

given region S into several regions S1, S2, . . . with areas A1, 

A2, . . . as shown in Figure. We then define the area of the 

region S to be the sum of the areas of the smaller regions 

S1, S2, . . . that is, A=A1+A2+…. Since 

f (x)  g(x)  
 f (x)  g(x) when f (x)  g (x) 

g(x)  f (x) g (x)  f (x) when 

Example 2: Find the area of the region bounded by the curves y=sinx, y=cosx, x=0, 

and x=/2. 

Sol.: The point of intersection occur when sin x = cos x, that is, when x=/4. 

Observe that cosx ≥ sinx when 0 ≤ x ≤ /4 but 

sinx ≥ cosx when /4 ≤ x ≤ /2. Therefore the 

required area is 
 2 

A   cos x sin x dx  A1  A2 

0 
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 4  2

 [cos x  sin x]dx  [sin x  cos x]dx
 40 

 [sin x  cos x] 4 [cos x sin x] 2  4 0 

    0 1   0 1 1 1 1

2 

1
   



 2 

  2 2 2 

2  2 

In this particular example we could have saved some work by noticing 

that the region is symmetric about x=/4 and so, 
 4 

A  2A1  2 [cos x sin x]dx
0 

Integration with respect to y (horizontal strip) 

Some regions are best treated by regarding x as a 

function of y. If a region is bounded by curves with 

equations x=f(y), x=g(y), y=c, and y=d, where f and g are 

continuous and f(y) ≥ g(y) for c ≤ y ≤ d then its area is 
d 

A  [ f ( y)  g( y)]dy
c 

 dy 

If we write for the right boundary xR and for the left 

boundary xL, then we have 
d 

A  [xR  xL ]dy
c 

 dy 

Example 3: Find the area enclosed by the line y = x – 1 and the parabola 

y2 = 2x + 6 

Sol.: To find points of intersections put xline = xcurve so 
dy 

y2  6 2( y 1)  y2  6 y2  2 y  8  0 y  1   
2 

 ( y  4)( y  2)  0 either y=4  x=5 

 x=-1 or y=-2 
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(5,4) and (-1,-2) are the points of intersections of the two curves. 

We can notice from Figure that the left and right boundary curves are 

x  
1 

y2  3xR  y  1 and 
L 2 

We must integrate between the appropriate y-values, y=-2 and y=4. Thus 

4 

A  [xR  xL ]dy
2 

4 1 
 [( y 1)  ( y2  3)]dy

2 2 

4 1 
 [ y2  y  4)]dy

2 2 

y3 y 2 

 [    4 y] 
2 * 3 

4 
2 

2 

    (2)3 (2)2 43 42 

    4 * 4     4 *(2)
6 2 6 2    

 
64 

 8 16  
8 
 2  8  18 square units.

6 6 

Example 4:  Find the area of the region between the 

curves x=y2 and x=y+2 in the first quadrant. 

Sol.: Graph the curves together 

a. Using vertical strip: we should split the are

into two areas by the line x=2

y 

3 

x=y2 2 

(4,2)
dA2 

A 21 x=y+2 
dA1 A1 

 A  A  A x 0 
0 -1 1 2 3 4 5 1 2 

The area of the first typical rectangle 

dA1  ( yT  0)dx  ( x  0)dx  xdx 

-1 

-2 

2 

x3 2 2 2 
  A   dA  xdx   [23 2  0]  1.885618 1 1 3 2 3 0 0 

The area of the second typical rectangle 

dA2  ( yT  yB )dx  ( x  (x  2))dx  ( x  x  2)dx 
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4 4 

 A2   dA2  (  x  x  2)dx 
2 

x3 2 x2 


3 2 2 

 2x 
2 

43 2 42 23 2 22 

 [   2* 4] [   2* 2]  1.447715 y 

3 2 2 3 2 2 
3 

 A  1.885618 1.447715  3.333333 square units 

b. Using horizontal strip:

The area of the typical rectangle

xL=y2 

l=xR-xL 

2 (4,2) 

xR=y+2 
1 dy 

x 0 

dA  (x  x )dy  {( y  2)  y2}dy -1 0 1 2 3 4 5 

R L 

-1 2 

y3 2 

 A   dA  ( y  2  y2 )dy 
0 

y2 

2 
 2 y 

3 -2 

0 

22 23 

 [  2* 2  ] [0]  3.33333 square units
2 3 
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2. Volume of Solids of Revolution:

The Solid generated by rotating a plane region about an axis in its plane is 

called a solid of revolution. We will use the following methods to find this 

volume 

a. The Disk Method (The strip is perpendicular to the axis of revolution):

i. Rotation about x-axis: The volume of the solid generated by revolving

the region between the graph of continuous function y=f(x) and the x-axis

from x=a to x=b about the x-axis is

dV  .(radius)2 (thickness)  .y2dx  . f (x)2 dx 

Volume  dV   (radius)2 dx    f (x)2 dx
b b 

a a 

 y=f(x)  radius=y=f(x) 

a 
d  y=f(x) 

 b 

 radius=y=f(x) 

a b   dx 

ii. Rotation about y-axis: If the region bounded between the continuous

function x=f(y) and y-axis is rotated about y-axis from y=c to y=d to generate

a solid, then the volume of the solid is:

dV  .(radius)2 (thickness)  .x2dy  . f ( y)2 dy 

Volume  dV  (radius)2 dy    f ( y)2 dy.
d d 

c c 
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 d 
d 

dy 

c c 
radius=x=f(y) 

radius=x=f(y) 

Example 1: The region between the curve y  x , 0 ≤ x ≤ 4, and the x-axis is 

revolved about the x-axis to 

generate a solid. Find its volume. 

We draw figures showing the region, the 

typical radius and the generated solid. The 

volume of the disk is 

dV  .(radius)2 (thickness)  .r 2.t 

Sol.: 

 dx 

Where r  y  f (x)  x and t  dx 

 dV   (  x )2 dx   .x.dx 

So the volume of the solid is 

 r=y= 

4 4 

V   dV   .x.dx  
x2 

2
dx 

0 0 

 
 

[42  02 ]  
16 

 8 cubic units 
2 2 
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Example 2: The circle + y2 = a2 is 

rotated about the x-axis 

x2 

to generate a sphere.   dV=(a2 – x2)dx  

Find its volume. 

Sol.:  We imagine a sphere cut into 

thin slices by planes  dx 

perpendicular to the x-axis. 

The volume of a typical slice 

at point x between a and –a is 

dV  .r 2.t  .y2dx   (a2  x2 )dx 

Therefore the volume is 

dx 

a a 

V   dV   (a2  x2 )dx  2 (a2  x2 )dx
a 0 

a 
x3 4 

 2 (a2x  )   .a3 
3 3 

0 

Example 3: Find the volume of the solid generated by revolving the region 

bounded by y  x and the lines 

y=1, x=4 about the line y=1. 

Sol.: We draw figures showing the region, 

the typical radius and the generated 

solid. The volume of the disk is 

dV  .(radius)2 (thickness)  .r 2.t 

Where r  y 1   x 1 and t  dx 

dV   (  x 1)2 dx 

So the volume of the solid is 

 r 

dx 

 r 

dx 

  

8



4 4 4 x2 2x3 2 

V   dV   (  x 1)2 dx   (x  2  x  1)dx   (   x) 
2 3 2 1 1 1 

42 4 * 43 2 12 4 *13 2 
 [(   4)  (   1)]

2 3 2 3 

 
7 

cubic units 
6 

Example 4: Find the volume of the solid generated by 

revolving the region between the y-axis and the 

curve x=2/y, 1 ≤ y ≤ 4, about y-axis. 

Sol.: We draw figures showing the region, the typical radius 

and the generated solid. The volume of the disk is 

dV  .(radius)2 (thickness)  .r 2.t 

dy 

2 Where r  x  and t  dy
y 

 
42  dV   (  ) dy 

y 
2 dy 

y2 

So the volume of the solid is 

4 
4 4 4

y 
V   dV   dy  

y2 
radius=x= 1 1 

 4[ 
1 
 ( 

1
 )]  4 * 

3

4 1 4  r 

 3 cubic units 

Example 5: Find the volume of the solid generated 

by revolving the region between the 

parabola x = y2 + 1 and the line x = 3, 

about x = 3. 

Sol.: We draw figures showing the region, the 

typical radius and the generated solid. Note 

that the cross-sections are perpendicular to 

the line x = 3. The volume of the disk is 

 dy 

 r 

dy 

 

radius=x=

 
  

    

 

  

 

   

9



dV  .(radius)2 (thickness)  .r 2.t 

Where r  3  x  3  ( y2 1)  2  y2 

dV   (2  y2 )2 dy 

So the volume of the solid is 

2 

V   dV   (2  y2 )2 dy
 2 

and t  dy 

2 2 2 y5 4 
  (4  4 y2  y4 )dy  2  (4  4 y2  y4 )dy  2 (4 y  y3  ) 

3 5 
2 0 0 

64  2 ( 2)5 4 
 2[(4  2  ( 2)   )  (0)]  cubic units3 

3 5 15

b. The Washer Method (The strip is perpendicular to the axis of

revolution): 

If the region we revolved to generate a solid does not border on or cross 

the axis of revolution, the solid has a hole in it. The cross-sections perpendicular 

to the axis of revolution are washers instead of disks. The dimensions of a 

typical washer are 

Outer radius: 

Inner radius: 

Thickness: 

R 

r 

t 

R 
r 

The washer's volume is: 

i. Rotation about x-axis:

dV=  [R2 – r2] t 
a.o.r

If a region bounded by curves with equations y=f(x), y=g(x), x=a, and x=b,

where f and g are continuous and 

then, 

R=yT=f(x), r=yB=g(x) and t=dx 

f(x) ≥ g(x) for a ≤ y ≤ b is rotated about x-axis 

b b b 

   V   dV   {R2  r2}dx   {( y )2  ( y )2}dx   {[ f (x)]2 [g(x)]2}T B 

a a a 

t 
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 (x,f(x)) 

(x,g(x)) 

yT=f(x) 

 yB=g(x)  
dx dx 

dx 

ii. Rotation about y-axis:

If a region bounded by curves with equations x=f(y), x=g(y), y=c, and y=d,

where f and g are continuous and f(y) ≥ g(y) for c ≤ y ≤ d is rotated about y-axis 

then, 

R=xR=f(y), r=xL=g(y) and t=dy; 

and the volume of the solid: 
d d d 

V   dV  {R  r }dy  {(x )2  (x )2}dy  {[ f ( y)] [g( y)] }dy    2 2 2 2 

R L c c c 

 R=xR=f(y) 
R=xR=f(y) 

y=d 
r=xT

=g(y) 

dy 
R=xR=f(y) 

dy 

y=c r=xL=g(y) 

  

r=xL=g(y) 
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revolved about the x-axis to generate a solid. Find its volume. 

Sol.: 

1. Draw the region and sketch a strip across it

perpendicular to the axis of revolution. 

Find the outer and the inner radii of the washer 

that would be swept out by the strip if it were

revolved about the x-axis along with the region.

R

2. r dx 

These radii are the distance of the ends of the strip from the

revolution.

Outer radius: R=yT=-x + 3 

Inner radius: r=yB= x2 + 1 

Find the limits of integration by finding the x-coordinate 

intersection points of the curve and line (put ycurve = yline). 

x2 + 1 = -x + 3 

x2 + x -2 = 0 

(x + 2) (x - 1) = 0 

axis of 

3. of the 

Either 

or 





x = -2 

x = 1 

y = 5 

y = 2 

4. Find the washer's volume

dV =  [R2 – r2] t R 

where R= yT = -x + 3, r= yB = x2 + 1 and t=dx 

dV=  [(-x + 3)2 – (x2 + 1)2] dx 

=  [x2 -6x + 9– (x4 + 2x2 + 1)] dx 

=  [ 8 - 6x - x2 -x4 ] dx 

5. Evaluate the volume integral
1 

V   dV   (8  6x  x2  x4 )dx

dx 

r 

2 

1 
1176x2 x3 x5 

  (8x    )  cubic units. 
2 3 5 5 

2 

R 

r 

Example 6: The region bounded by the curve y =x2 + 1 and the line y = -x + 3 is 
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Sol.: 
y=x2+1 (-2,5) 

1. Draw the region and sketch a strip across 

perpendicular to the axis of revolution.

it y=3-x 

(-2,5) R=y inclined line-yhorizontal line 
r=y -y curve horizontal line dx 

y= 1 

2. Find the outer and the inner radii of the

washer that would be swept out by the strip.

These radii are the distance of the ends of the

strip from the axis of revolution.

Outer radius: R=y inclined line-y horizontal line 

=(-x + 3)-(1) = -x + 3-1=-x+2 

Inner radius: r=ycurve –y horizontal line 

=( x2 + 1) –(1) = x2 

(-2,5) 

(1,2) R=y inclined line-yhorizontal line 

y= 1 r=y curve-yhorizontal line 

t=dx 

3. Find the limits of integration: from

integration are from x = -2 to x = 1

Find the washer's volume

dV =  [R2 – r2] t 

previous example the limit of 

4. 

where R= 2- x, r= x2 and t=dx 

dV=  [(2-x )2 – (x2 )2] dx 

=  [4 - 4x - x2- x4 )] dx 

5. Evaluate the volume integral
1 

V   dV   (4  4x  x2  x4 )dx
2 

1 
754x2 x3 x5 

  (4x    )  cubic units. 
2 3 5 5 

2 

Example 7: Repeat Example 6 but here rotate about the line y=1 
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revolved about the y-axis to generate a solid. Find the volume of the 

solid. 

Sol.: First we draw the 
r R 

region and draw a strip 

across it perpendicular 

to the axis of revolution 

(the y-axis). The radii 

of washer swept out by 

R 

r

dy dy 

the 

R  xR 

strip 

y 

are 

and 

its r  xL  y / 2 but 

thickness is t=dy 

The line and parabola intersect at y = 0 and y = 4, so the limits of integration 

are c = 0 and d = 4. We integrate to find the volume: 

y2 

dV  [R  r ]t  [( y )  ( y / 2) ]dy  [ y  ]dy 2 2 2 2 

4 

4 4 y2 y2 y3 8 
V   dV  [ y  

4 
]dy  [ 

2
  cubic units 

3 
 ] 

3* 4 0 0 

Example 8: The region bounded by the parabola y =x2 and the line y = 2x is 
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c. Volumes by Cylindrical Shells (The 

revolution)

The volume of the solid obtained by 

rotating the region bounded by y=f(x) [where 

f(x) > 0], y=0, x=a and x=b about the y-axis is 

obtained by: 

strip is parallel to the axis of 

Volume of typical cylindrical shell 

dV=2(r)(l)(t) 

where r= radius of cylinder = x 

l= cylindrical length (or height) = f(x) 

t= shell thickness = dx 

 dV  2 .x.[ f (x)]dx 

and volume of the solid 
b 

V   dV  2[ f (x)]x.dx
a 

r=x 

t=dx 

Example 1: Find the volume of the solid 

obtained by rotating about the y-axis 

the region bounded by y  2x2  x3 and 

y=0. 

Sol.: From the sketch of the curve we see that a 

typical shell has radius x and height y=f(x). So, 

by the shell method, the volume of typical shell is: 

dV  2r.l.t  2x[ f (x)]dx  2x(2x2  x3)dx 

To find the limits of integration put ycurve = 0 so: 

r=x 

l=y=2x2  -x3 

x2 (2  x)  0 

x  0 

2x2  x3  0 

 either x2  0 

or (2  x)  0  x  2 

so the volume of the solid: 

l=
f(

x)
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2 2 x4 x5 

V   dV   2 (2x3  x4 )dx  2[2*  ]
4 5 

0 0 

24 25 32 96 
 2[(2 *  )  (0)]  2[16  ]   cubic units

2 5 5 5 

Example 2: Find the volume of the solid obtained by rotating about the y-axis 

the region between y=x and y=x2. 

Sol.: when we sketch the region we see that the shell has radius x, and height x- 

x2. So the volume of typical cylindrical shell: 

dV  2r.l.t  2x(x  x2 )dx 

r=x To find the limits of integration put ycurve= yline so 

x  x2  x  x2  0  x(1 x)  0 

 either x  0 

or (1 x)  0 





y  0 

x  1 and  y  1 

So the volume of the solid: 
1 1 x3 x4 

V   dV   2 (x2  x3)dx  2[  ]
3 4 0 0 

1 13 14 1  2[(  )  (0)]  2[    ]  cubic units
3 4 3 4 6 

Example 3: Find the volume of the solid obtained by rotating 

bounded by y= x – x2 and y = 0 about the line x = 2. 

Sol.:  To graph the curve y = x – x2, complete the 

square and compare the resulting equation with 

the curve y = - x2 

the region 

y  (x2  x  
1

)  
1 
 (x  

1
)2  

1

4 4 2 4 

Sketch the region by shifting the curve y=-x2 by 1/2 units left and 1/4 units 

up. r=2-x 

l=y 
dx 
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The volume of typical cylindrical shell: 

dV  2r.l.t 

Where r=2-x, l=y=x-x2 and t=dx 

dV  2 (2  x)(x  x2).dx 

 2 (2x  2x2  x2  x3)dx 

 2 (2x  3x2  x3 )dx 

To find the limits of integration put ycurve = 0  x  x2  0  x(1 x)  0 

 either x  0 

or (1 x)  0  x  1 

So the volume of the solid: 

1 

V   dV   2 (2x  3x2  x3).dx
y 0 

y=x2 3 1 
x4 

 2 (x  x  ) 2 3 

4 2 
0 r=2-x 


2 

y=1 14 
1 

 2[(12 13  )  (0)] 
4 

x 0 
-2 -1 0 

d1x 
2 3 4 5 

Example 4: The region bounded by the parabola 
-1 

y=x2, the y-axis and the line y=1in the 

first quadrant is revolved about the line 

x=2 to generate a solid. Find the volume 

of the solid. 

Sol.: l=1-y, r=2-x and t=dx 

dV=2.r.l.t=2 (2-x)(1-y)dx 

=2 (2-x)(1-x2)dx 

The limits of integration from x=0 to x=1. 

The volume of the solid: 
1 

V   dV   2 (2  x)(1 x2 )dx
0 

-2 

y 

y=x2 3 

y=1 
2 

r=2-f(xx)=x̂ 2 

y=1 
1 

x 0 
-2 -1 0 d1x 2 3 4 5 

-1 

-2 

l=
1-

y 
l=

1-
y 
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1 1 2x3 x2 x4 

  2 (2  2x2  x  x3)dx  2 (2x    )
3 2 4 0 0 

2*13 12 14 

 2[(2*1   )  (0)] 
3 2 4 

 
13  cubic units
6 

Example 5: Find the volume of the solid which is generated by rotating the 

region bounded by y  x , y=x-2 and x-axis about: 

a. x-axis. b. y-axis. y 

3 

Sol.: a. about x-axis (the strip is parallel to the axis of 

rotation so it will give cylindrical shell) 

dV=2.r.l.t 

xL=y2 

l=xR-xL 

2 (4,2) 

xR=y+2 
t=dy 1 

r=y 
where r=y, l=x -x =(y+2)-(y2)= y+2-y2 and t=dy R L x 0 

-1 0 1 2 3 4 5 

dV  2.y( y  2  y2 )dy  2 (2y  y2  y3)dy 

The limits of integration from y=0 to y=2 

So the volume of the solid: 
2 

V   dV   2 (2 y  y2  y3)dy

-1 

-2 

0 

2 
y3 y4 

 2 ( y2   ) 
3 4 y 0 

3 

23 24 16 R=x =y+2  2[(22   )  (0)]   cubic 
3 4 3 r= 2 (4,2) 

units 

b. about y-axis (the strip is perpendicular to the

axis of rotation so it will give washer)

dV=R2r2.t 

where R= xR=y+2, r=xL=y2 and t=dy 

dV  .[( y  2)2 ( y2 )2 ]dy 

 [ y2  4 y  4  y4 ]dy 

The limits of integration from y=0 to y=2 

1 
t=dy 

x 0 
-1 0 1 2 3 4 5 

-1 

-2 

 

R 

xL=y2 
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So the volume of the solid: 

2 

V   dV   ( y2  4 y  4  y4 )dy
0 

2 
y3 y5 

  (  2 y2  4 y  ) 
3 5 

0 

23 


 5 

 
2  [( 2* 2 4* 2 )  (0)] 

184  cubic units2 
3 5 15 
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3. Length of Plane Curves:

i. Suppose that y=f(x) is a smooth curve on

interval [a, b], then:

the 

(y )2 

Lk  (xk )  (yk )   (xk ) [1   k ] 2 2 2 

(x )2 
k 


2 

 y 
[1   k   ].(xk ) 

 xk 


2 

 y n n 

 L   Lk 

k 1 

  [1    k   ].(xk ) 
 xk k 1 

Lk When n   x  0 


2 

 y  L  [1    k   ].(xk ) So  L  k-1 lim 
 xk xk 0 

k 1
 

yk Remember that lim  f ̀ (x)
x0 xk

 

----(1) 

ii. Suppose that x=f(y) is a continuous from y=c to y=d, then the arc-length of

the curve is:

----(2) 

iii. If the curve is represented by a parametric equations:

dx , dy 
x=x(t), y=y(t) and a ≤ t ≤ b and if are continuous functions on

dt dt

a ≤ t ≤ b, then the arc-length of the curve is:

----(3) 
b  dx 

2 
 dy 

2
 

L    dt 
   

dt 
 .dt

a    

 

d  d 

L   1[ f ̀ ( y)]2 dy  
c c 

 dx 
2
 

1   dy 
 dy 

b  b  dy 
2 

 L   1[ f `(x)]2 dx   1   dx
a a  dx 
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Example 1: Find the length of the curve 

y  
4 2 

3 
0  x  1 . x3 2 1; 

Sol.: We use equation (1) with a=0 and b=1, and 

4 2 

3 
y  x3 2  1 

dy  
3 

* 
4 2 

x1 2  2 2x1 2 

dx 2 3 

  1 2 2  dy 
2
 

2 2x  8x .  
 dx 

The length of the curve from x=0 to x=1 is 

 dy 
2
 

b 

L  
a 

1  

1     dx   1  8xdx
dx   0 

1 

(1 8x)3 21 1   1 
  1 8x8.dx  . 

8 8 3 2 0 0 

 
1 

.[(1  8 *1)3 2  (1  8 * 0)3 2 ]  
13

 unit length.
12 6 

 x 
2 3

 Example 2: Find the length of the curve y   from x=0 to x=2. 
 2 

Sol.: The derivative:

2  x 
1 3

 1  x 
1 3

 dy 1 
 *    

dx 3  2  2 3  2 

is not defined at x=0, so we can not find the curve's length with equation 

(1). We therefore rewrite the equation to express x in term of y (x=f(y)): 

 x 
2 3

 x 

2 
y       x  2 y3 2y3 2 

 2 

Note that when x=0 



y=0 

y=1 and x=1 

from this we see that the curve whose length we 

want is also the graph x  2 y3 2 from y=0 to y=1 
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The derivative 

dx  3 
2 * y  3y 1 2 1 2 

dy 2 

is continuous from y=0 to y=1. We may therefore us equation (2) to find 

the curve's length: 

2 d 

L  
c 

 dx  1 

1 3y  dy 1   dy  
2 1 2 

 dy  0 

1 1  9 y3 2 11 

 
0 

1  9 ydy 
9 3 2 

0 

2 
 [(1  9 *13 2 )  (1  9 * 03 2 )] 

27 

2 

27 
(10 10 1)  2.27 unit length. 

Example 3: Find the length of the circle of radius r defined parametrically by 

x=rcos t and 0 ≤ t ≤ 2. y=rsin t 

Sol.: As the curve is defined by parametric equation, we use equation (3) to find 

the length of the curve 

 dx 
2 

 dy 
2
 

b 

L  
a 

 
dt 
   

dt 
 .dt 

   

 dx 
2
 dx 

dt 
  2 2 We find  r sin t   r sin t  r sin t 2  

 dt 

 dy 
2
 dy 

dt 
  2  r cost r cos t  r cos t    2 2 

 dt 

 dx 
2 

 dy 
2
 and    r 2 sin2 t  r 2 cos2 t   

 dt   dt 

 r2 (sin2 t  cos2 t)  r2. 

22

 L  
2

0 r .dt  r.dt  r.t
0 

2 

0 

 r(2  0)  2.r unit length. 
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Example 4: Find the length of the curve 

x=cos3t, y=sin3t, 0 ≤ t ≤ 2. 

Sol.: Because the curve's symmetry with respect to 

coordinate axes, its length is four times the length 

of the first quadrant portion. We have 

x=cos3t, y=sin3t 

 dx 
2
  [3cos2 t.( sin t))2  9 cos4 t sin2 t  

 dt 

 dy 
2
  [3sin2 t.cos t]2  9 sin4 t cos2 t  

 dt 

 dx 
2
  dy 

2
  9 sin 2 t cos2 t(sin2 t  cos2 t)    

 dt   dt 

 9 sin2 t cos2 t  3sin t cos t 

 3sin t cos t (because sint.cost ≥ 0 for 0 ≤ t ≤ /2) 
 2 

Therefore: The Length of the first quadrant portion= 3cos t sin t.dt
0 

3  2  2 
3 3  sin 2t.dt   cos 2t

2 4 


2 0 0 

 .The length of the curve is four times this: 4(3/2)= 6 unit length
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4. Area of Surface of Revolution:
B(b, d) If the function 0 is y=f(x) > A(a, c) 

continuously differentiable on [a, b], the 

area of the surface generated by revolving 

the curve y=f(x) about the x-axis is 

calculated as following: 

The surface area of typical cylinder 
(a, 

is dS=2r.dL 
(b, d) 

dL will be calculated from one of the 

following three relations: 

or r 

2 

1   dy i. dL    .dx 
 dx 

 dx 
2
 ii. dL  1     .dy

dy  

2 2 
 dy    dx iii. dL      .dt 
 dt   dt 

r or  is the radius of the typical cylinder: (As in this case when the curve is 

rotated about x-axis), then 

r=y=f(x) 

b 

S   dS   2 .r.dLSo the surface area: 
a 

If we represent dL by the first equation, then: 

 dy 
2
 

b 

S  2 .y.

b 

.dx  2 . f (x). 1  [ f `(x)]2 .dx 1   ----(1) 
 dx a a 

When the same area is rotated about y-axis then: 

r=x 

The surface area is 

b 

S   2 .x. 1[ f `(x)]2 .dx 
a 

----(2) 

 

 

dL c) 

dL 
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Note: We can use this expression instead of equation (1) in case of the curve is 

expressed as x=f(y) 

 dx 
2
 

d 

S  2 .y.

d 

1    .dy  2 .y. 1 [ f `( y)]2 .dy ----(3) 
 dy c c 

and this expression instead of equation (2) in case of the curve is expressed as 

x=f(y) 

 dx 
2
 

d 

S  2 .x.

d 

.dy  2 . f ( y). 1  [ f `( y)]2 .dy 1    ----(4) 
 dy c c 

If the curve is expressed as parametric equation such: 

x=x(t), y=y(t) a ≤ t ≤ b 

dx , dx 
and are both continuous in above interval then the area of surface area

dt dt 

generated by revolving this curve 

i. about x-axis is

 dy 
2
  dx 

2
 

b 

S   2 .y(t)  
dt 
   

dt 
 ----(5) .dt 

   a 

ii. about y-axis is

 dy 
2
  dx 

2
 

b 

S  2.x(t)  
dt 
   

dt 
 ----(6) .dt 

   a 

Or in general from short differential form 

S   dS   2..dL

Where dL  dx2  dy2 

and  is the radius from axis of revolution 

element of arc-length dL. If axis of rotation is 

 x=k then   x-k

 y=k then   y-k

a.o.r
to an 


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Example 1: Find the area 

y  2  x, 1  x  2 

of the surface generated by revolving the 

about x-axis. 

curve 

dS=2r.dL 

where r  y  2 x 

Sol.: 

dL 

and dL   1[ f `(x)]2 .dx 

r=y 1 1 

x 
f `(x)  2* x 1 2 

2 

dS  2 (2 x ) 1[ f ̀ (x)]2 .dx 

1 

x 
1 

1 
.dx 4 ]2 .dx  41[ x x 

x 

2 
x 1 2

  S   dS  4 x 1.dx  4
(x 1)3 2 4 x .dx  4 x 1.dx 

3 2 x 1 1 

 
8 

[(2 1)3 2  (11)3 2 ]  19.836 square units 
3 

Example 2: Find the area of the surface generated by revolving the portion of 

the curve y=x2 between x=1 and x=2 about 
y 

y-axis.

dS=2r.dL 

where r  x 

4 (2,4) 

Sol.: 
3 

2 

and dL 

y=x2 

 dL 

1[ f `(x)]2 .dx 

f`(x) = 2x 

1 (1,1) 

x 0 
-1 0 1 2 3 

1  (2x)2 .dx  1  4x2 .dx 
-1 

y 
2 2 1 (1 4x2 )3 2

 S   dS   2 .x 1 4x2 .dx  2[ 4 (2,4) 

8 3 2 
1 1 

3 

r=x 2   dL  (1  4x2 )3 2  [(1  4 * 22 )3 2  (1  4 *12 )3 2 ] 
2 6 6 1 

 
 

[173 2  53 2 ]  30.85 square units. 
1 (1,1) 

6 
x 0 

-3 -2 -1 0 1 2 3 

-1 
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Another solution: Use x=f(y) 

dx 

dy 

1
y=x2  x  y  

2 x 


2 

 dx 
2
  1 1 

4 y 
      

 dy 
 2  y  

 dx 
2
 4 y 1 4 y 1 1 

 dL  1   .dy 
dy 

1 .dy 
4 y 

.dy  .dy 
4 y 2  y  

The limits of integration: 

When x=1  y= (1)2=1 and when x=2  y=(2)2=4 

4y 1 4y 1 4 

S   dS   2.x
1 

4 

.dy   2. y .dy 
2  y 2  y 1 

4 

1 (4 y 1)3 2 
4

  . 4 y 1dy   * 


 [(4 * 4 1)3 2  (4 *11)3 2 ] 
4 3 2 3 1 1 

 
 

[173 2  53 2 ]  30.58 square units. 
6 

Example 3: The line segment x =1-y, 0 ≤ y ≤ 1, is revolve about x = -1 to generate 

truncated cone. Find its lateral surface 

(which excludes the top and base areas). 

Sol.:  dS=2rdL 

r = x-k = x-(-1) = x+1 

area 
y 

x=-1 

x=1-y 
2 

1   dy dL    .dx x 
 dx 

dy  
d 

and (1  x)  1
dx dx 

 dy 
2
 1    1  (1)2  1  1  2  

 dx  y 

 dL  2.dx 

So dS  2rdL  2 (x 1) 2dx 
r=x+1 

dL 

When y=0 

y=1 

 x =1-0=1 

 x =1-1=0 x 

x -1 
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
1 1 

 S   dS  2 2  (x  1).dx  2
0 

 x2

2  2
 x

 0

12   02  3  2 2  
2 
1    0  2 2  

2 
  3 2 square units 

2     

Example 4: Find the area of the surface generated by revolving the parametric 

curve x=cos2t, y=sin2t , 0 ≤ t ≤ /2 about y-axis. 

Sol.: dS=2.dL 

where   x  cos2 t 

y

4 (2,4) 

3 

 dx 
2 

 dy 
2
 =x 

and dL  dx2  dy2      .dt dL 
 dt   dt  2 

2 

 
dx 

 2cos t sin t  dx  1 (1,1) 
x  cos2 t   4cos2 t sin2 t  

dt 


dt  
x 0 

-1 0 1 2 3 

 dy 
2
 dy 

dt 
y  sin2 t   2sin t cos t   4sin2 t cos2 t   -1 

 dt 

dL  8sin2 cos2 t.dt  2 2 sin t cos t.dt 

 2 

S   dS   2 cos2 t(2
0 

 2 

2 sin t cos t)dt   4 2 cos3 t sin t.dt
0 

 2 

cos4 t 
  4 2 2[cos4    cos4 0]   2[(0) 1]  2 square units.  

4 2 
0 
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